科目名 機械材料				英文表記		Engineering Materials			2010年6月5日				
教員名:	眞喜志	·隆	_						修	正			
対象学科 学年			学年	必・選		履修・学修	単位数	授業用	杉態	授業期間			
機械システム工学科 3			Ą	必履修		3	講義 (実験 を む)	全含	通年				
目は	,	目標とする	機械部品	に適し	た材料	を習得する。 料を選定する能 P熱処理などを		習得する	0	⁻ る。			
高専目標		1 2	3 4	1 .	JABE	E プログラム:	名称						
				JA	BEE	プログラム教	育目標						
						楚となる状態図 実用炭素鋼・非							
授業 概方 針		樹脂材料・	セラミッ	ク材料	の基礎	楚的な性質と機	械工学分 野	野での応用	につ	ハて学習す			
履修上の	注意	る。 前期・後期に各1回の割合でPBLを取り入れた実験を行う。前期は金属の諸性質											
		一位力を養成する。											
		定期試験の得点 80%および PBL での発表と報告書の得点 20%の割合で評価し、合計点の 60%以_											
評価フ	方 法	取得のとき単位	を認定する	ò.									

		吉岡・岡田・中山:機械の材料学入門:コロナ社											
参考		▶ 日本金属学会編:金属便覧:丸善、日本セラミックス協会編:セラミックス辞典:丸善、											
		日本機械学会編	: J S M E	テキス	トシリ	ーズ機械材料学:	丸善						
				授	業	計 画							
抒	受 劣	東 項 目		時間		授	業	内 容					
1. 原子の	構造と結	·晶構造		4	代表	的な結晶構造の種類と性質を学習する							
2. 格子欠区	陥の種類	と性質		4	結晶内に存在する格子欠陥の性質を学習する								
3. 固溶体の種類と性質				4	合金	合金の基礎になる固溶体の性質を学習する							
4.1 成分系の状態図				4	純物質の状態変化もとに状態図の基礎を学習する					する			
5.2 成分系の状態図(全率固溶型)			4	全率固溶型の合金とその状態図について学習する				する					
6.2 成分系の状態図(共晶型)			4	共晶型の合金とその状態図について学習する									
7. 拡散現象概論			4	固体内での拡散に基礎を学習する									
8. 前期中間試験			2										
9. 転位の種類と性質				4	転位の種類と性質を学習する								
10. 転位の相互作用				4	転位の相互作用と機械的性質の変化を学習する転位をもとにした金属の強化法に考え方を学習する								
11. 金属の 固溶体強化		加工硬化・回復・	再結晶・	4	転位	をもとにした:	金属の強化	法に考え	Fを学	習する			
12. 金属の強化法(焼入れ・時効処理)				4	PBL:加工硬化・回復・再結晶について実験をおい、塑性変形での材料の硬化と加熱による軟化を解る								

学習時間合計	90	実時間	75			
学年末試験	[2]		ı			
31. セラミックス材料の特徴	2	セラミックス材料の一般的な性質について学習する				
30. 樹脂材料の特徴 2	2	機械材料としての樹脂材料の性質と用途を学習する				
29. 樹脂材料の特徴 1		樹脂材料の一般的な性質を学習する				
28. 複合材料	2	複合材料の機能予測の原理	里について学習する			
27. 新しい機械材料	2	複合材料などの新しい機構	戒材料について学習する			
26. 銅合金の種類と用途	2	銅合金の種類と特徴につい	ハて学習する			
25. アルミニウム合金の用途	2	アルミニウム合金の熱処理	里と用途について学習する			
24. アルミニウム合金の種類	2	アルミニウム合金の種類と	と特徴について学習する			
23. 後期中間試験	2					
		め、どのような使用分野が				
22. 実用機械材料の特性実験	2		<u> </u>			
21. 鋳鉄の性質と用途		鋳鉄の種類と性質についる				
20. ステンレス鋼の種類と性質	2		<u>- 1000</u> 重類と性質について学習する			
19. 合金鋼の種類と用途	2	実用合金鋼の種類と性質で				
18. 合金元素の影響	2	合金を造る目的と合金元素				
17. 炭素鋼の熱処理実験	2	炭素鋼の熱処理について乳				
16. 炭素鋼の熱処理	2	 炭素鋼の熱処理方法につに	 . <i>\て</i> 学習する			
前期末試験	[2]	大川次宗明の祖孫と江萸1	COVICTEYO			
		=	レ成分・組織について学習する			
13. 熱処理の基礎と応用14. 炭素鋼の製造・組織15. 炭素鋼の種類と用途	4 4 4	熱処理の概論を学習する 鉄鋼材料の製造法の概論と 実用炭素鋼の種類と性質に				

学修単位における自学自習時間の保証(レポート頻度など)