科目名				文表	12		ength of Mate		2011年3月14日				
科目コード	科目コード 2105 Engineering Design I												
教員名:比嘉 吉一 技術職員名:										作成			
対象学科/専攻コース 学年 必								履修・学修	単位数	授業形態 授業期間			
機械システム工学科 2年							<u>火</u>	履修	2単位	講義	通年		
			目標	項目				Ē	评価方法及	びその割合			
	①荷重を	部材の	応力,ひす	" <i>7</i> .	が形	① 各 ì	単元ごとに行	テから演習	課題 (20%)	と4回の定期			
											C I E V ALM		
	を求める力学的手法についての講義演習を 通して、強度の観点から、実際の機械・構												
	造物設計における具体的な形状・寸法を決												
	定できる能力を修得する.												
目標	⊕ 4-1-101 -T- 2	Y III :		3V ~ 77 11 8	11. 0-1	→ m	<i>∞ t</i> :	<u> </u>	— 1. > ≥ 101:	## H# /000/\			
最鋭	②材料力学で用いる理論の前提条件や適用 ②各単元ごとに行なう演習課題(20%)と4回の定期												
評価方法	範囲についての十分な理解を通して、エン 試験結果(80%)で理解度を判定する ジニアとして必要な『工学的センス』を養												
	ンー/ とし (必安な 工子的センク] を褒 う												
	7												
				修している							と4回の定期		
	学),数学をベースに、機械・構造物設計 試験結果(80%)で理解度を判定する												
	に必要な力学計算ができることを理解す る.												
	ఎ.												
高専	1 2	3	4	J.	ABEE	プロ・	グラム	名称					
目標	0	0		JABE									
											計に関する基礎		
TAS ARE TOU	的な学問であり、機械技術者が理解すべき最重要科目である. 本授業では、機械工学技術者として必要												
授業概	不可欠な力学的視点を基礎とする方法論と機械・構造物設計における実問題を解決する能力を2,3年生												
要、方針、履修	の2年間で学習する.2年生では、材料力学の基礎としての応力・ひずみの概念を理解し、実機械部材に												
上の注意	作用する外力(引張力,圧縮力,せん断力,曲げモーメント,ねじりモーメント)とそのつりあいについての理論を修得する.講義では数多くの例題を解説し、内容理解と応用力養成の目的から、PBL1形式												
1 2072	により多くの問題演習を課す。												
				と味り、 基礎数学I,IIの復習はもちろんのこと,2年生で履修する微積分I,IIをしっか									
	りと勉強す	つること								- / - 1991 1997 20	, == 2 0 = 10		
						ての材	料力	学,技術評詞					
教科書・ 単元ごとに演習プリントを配布する.													
教材													

				授	業 計	画						
回次	授業	項目			授業	内	容		予	習	項	目
1	材料力学序論•	ガイダンス			/力のつりあ]/モー	メント	のつ	りあい
2	材料力学序論		_	仏 糸	本の力学, モ			1]/モー.	メント	のつ	りあい
3	材料力学序論		4	カ	,荷重と応力			45	女科書 p	.12-	17	
4	応力とひずみ		2	変位/ひず ずみ	`み関係,縦	/横ひす	"み, せん断	·ひ 孝	対書 p	.18-2	21	
5	応力とひずみ		_	11 1/20 / /	, ポアソン比	•			対書 p	.22-2	24	
6	応力とひずみ		2	応力ひずみ 線図	・関係, フック	の法則,	応力ーひす	ドみ奏	女科書 p	.25-2	28	
7	応力とひずみ		2	材料の使用	応力, 許容原	芯力と安	全率	耄	女科書 p	.29		
8	中	間	2									
9	引張と圧縮		2	中間試験解 変位	答解説,真	直棒の応	カ/ひずみ	*/	対書 p	.32-3	34	
10	引張と圧縮		_	., ., ., .	カ/ひずみ	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Н.	己布プリン	/ }		
11	引張と圧縮		2	物体力の影 /変位	響を受ける	真直棒の	応力/ひず	[*] み	対書 p	.35-	39	
12	引張と圧縮		2	両端拘束さ	れた真直棒の	か応力/	ひずみ/変	变位 耄	女科書 p	.40-4	43	

	学習時間合計	60	実時間	50
期末	後期末試験	[2]	phonic BB I	
	曲げ変形を受ける部材		はりの設計と断面形状(2)	教科書 p.96-102
29	曲げ変形を受ける部材	2	はりの設計と断面形状(1)	教科書 p.96-102
28	曲げ変形を受ける部材	2	はりの断面二次モーメント, 断面係数, 曲げ応力	教科書 p.92-95, 配布プリント
27	曲げ変形を受ける部材	2	種々のはりのSFD, BMD(2)	教科書 p.75-85
26	曲げ変形を受ける部材	2	種々のはりのSFD, BMD(1)	教科書 p.75-85
25	曲げ変形を受ける部材	2	片持ちはり/単純支持はりのSFD, BMD	教科書 p.75-85
24	曲げ変形を受ける部材		はりの支持方法,せん断力と曲げモーメントのつ りあい	教科書 p.70-74
23	中間	2		
22	ねじり変形を受ける部材	2	伝動軸, 動力, 馬力, 伝動軸の設計指針(2)	教科書 p.64-66
21	ねじり変形を受ける部材	2	伝動軸, 動力, 馬力, 伝動軸の設計指針(1)	教科書 p.64-66
20	ねじり変形を受ける部材	2	段付丸軸のねじり、ねじりの不静定問題(2)	教科書 p.56, 配布プリント
19	ねじり変形を受ける部材	2	段付丸軸のねじり、ねじりの不静定問題(1)	教科書 p.56
18	ねじり変形を受ける部材	2	中実/中空丸軸の極断面係数, 断面二次極モー メントの誘導(1)	教科書 p.52-55
17	ねじり変形を受ける部材	2	ねじり応力とねじりモーメントとの関係式	教科書 p.52-55
16	ねじり変形を受ける部材	2	ねじりとねじりモーメント,ねじりの定義	教科書 p.52-55
期末	前期末試験	[2]		
15	引張と圧縮	2	内部応力(残留応力,組立応力)	教科書 p.46-47
14	引張と圧縮	2	熱応力と熱変形	教科書 p.44-45
13	引張と圧縮	2	両端拘束された真直棒の応力/ひずみ/変位	教科書 p.40-43

学習時間合計 60 学修単位における自学自習時間の保証 (レポート頻度など) 記入不要→この科目は履修形態のため、この欄の記入は不要