科目名科目コー	計算機科学 4316	英文表記		Computer Science		平成23年度3月			
教員名:佐藤 尚 技術職員名:								作成	
対象学科/専攻コース 学					履修・学 修	単位数	授業形 態	授業期間	
メディア情報工学科 4年 過				異	学修	2単位	講義	後期	
	目標項目				評価方法及びその割合				
	①複雑系の概念について理解する。				①レポート (10%)				
	②マルチエージェント・シ	②レポート (10%)							
目標 て理解する。									
及び	③強化学習の基礎を理解する。				③レポート (10%)				
評価方	④遺伝的アルゴリズムの基礎を理解す				④レポート (10%)				
法	⑤複雑系の構成論的研究手法について理				⑤レポート (50%)				
	⑥オートマトンの基礎を理	⑥宿題 (5%)							
	⑦ニューラルネットワーク	⑦宿題 (5%)							
	する。								
高専	1 2 3 4 JABEEプログラム名称 メディア情報工学								
日煙	○ JABEEプログラム教育目標							A-3	
授業概	生命、認知、言語、社会など、自律的に発展・進化するシステムである「複雑系」の概念、お								
要、方	よびその研究手法として有効な構成論的アプローチや関連基礎知識・技術ついて解説する。ま								
針、履	た、実際に1)複雑系を形式化、2)計算機上へのモデルの実装、3)シミュレーション実験								
■ 修上の ■ 注意	を通して、基礎的なものから複雑系まで対応可能なシミュレーション技法を学ぶ。本講義では C言語によるプログラミング演習を行うため、数式やアルゴリズムを基にプログラムを作成で								
<u>注息</u> 教科		ノ供白で1	J 100	ソ、多	. IN ~ / // ~	·) ^ 4 8 2	下にノ ロク	ノムを下放し	
▮ 教科 ▮ 書・教	教員自作プリント								
一 教									

			授 業 計 画
回次	授 業 項 目	時 間	授業内容予習項目
1	複雑系科学	2	複雑系に関する概念、基礎知識について学ぶ
2	構成論的アプローチ	2	理解したい対象の元となるシステムを作り・動かし てその対象の理解を試みる構成論的アプローチ について学ぶ
3	オートマトン1	2	1および2次元セルオートマトン、ライフゲームにつ いて学ぶ
4	オートマトン2	2	Wolframの1次元セルオートマトンと4つのクラスに ついて学ぶ
5	マルチエージェント・システム1	2	エージェントの概念、基礎知識について学ぶ
6	マルチエージェント・システム2	2	複数のエージェントによる相互作用系について学 ぶ
7	学習システム1	2	パーセプトロンについて学ぶ
8	学習システム2	2	階層型ニューラルネットワークについて学ぶ
9	学習システム3	2	強化学習の概念、基礎知識について学ぶ
10	学習システム4	2	Q学習について学ぶ
11	進化システム1	2	進化論的計算手法の概念、基礎知識について学 ぶ
12	進化システム2	2	遺伝的アルゴリズムについて学ぶ
13	複雑系シミュレーション1	2	複雑系シミュレーション実験用プログラムを作成 および実行し、複雑系の振る舞いを解析する。

	学習時間合計	30	および実行し、複雑糸の振る舞いを解析する。	25
15	複雑系シミュレーション3	2	複雑系シミュレーション実験用プログラムを作成 および実行し、複雑系の振る舞いを解析する。	
14	複雑系シミュレーション2	2	複雑系シミュレーション実験用プログラムを作成 および実行し、複雑系の振る舞いを解析する。	

学修単位における自学自習時間の保証(レポート頻度など)

第1回、第6回、第10回、第12回および第15回に計5つのレポート課題を課す。また、第4回および第8回に宿題を課す。

学習時間は、実時間ではなく単位時間で記入する。(50分=1、100分=2)