科目名	情報理論	並っ	さ表記	In	formation [Theory			
科目コー	5314		V 32 HL	momentum meory					
教員名: 長田 康敬 (N agata, Yasunori) 技術職員名:				作成			作成		
文	対象学科/専攻コー	7	学必	· 選	覆修・学 修	単位数	授業形 態	授業期間	
	メディア情報工学科	ŀ	5年 』	<u>χ</u> ,	学修	2単位	講義	後期	
	目標項目 評価方法及びその割合								
	①エントロピーによ 解する.	る情報量の表	現を理	① (%)中間試	験60%			
目標	②条件付き確率による相互情報量等の計 ② (%) 期末試験60% 算ができる.								
及び	③情報源の性質を理	③ (%) 課題, 小テスト等20%							
評価方	④雑音の無い通信路の性質とこの通信路 以上を総合的に判断して60点以上を合格とする.								
法	に対する情報の符号化ができる. た,60点以上70点未満をD,70点以上80点						80点未満をC, 		
	⑤雑音のある通信路の性質とこの通信路 80点以上90点未満をB, 90点以上をAとする.								
	に対する情報の符号化ができる.								
	⑥誤り検出・訂正符								
+ +	⑦線形符号と巡回符			- , 7	TL.	ے ر _د	こっては却っ	- برم	
高専		4 JABE JABEEプ	Eピプログ ログラム			<u> </u>	「ィア情報コ A-2	_子	
日煙	0					告を明らた		また、情報の	
授業概	授業概要:情報を数量的に認識する方法を示し、情報の構造を明らかにする. また、情報の 伝送								
■ 技术 「城	路とそこを通る情報量の性質を示し、情報伝送の仕組みを理解してもらう. さらに、伝送を効								
サイス 果							I — tete □ II)		
修上の	的に行なっために必 い	ふ要な情報交換	り埋論を	説明す	る. つま	り,連信路	浴量と情報	め符号化につ	
注意 て講義する.									
	履修条件 :確率の知識と,指数・対数の計算できることが望ましい.								
教科	"デジタル情報理論	省 塩野充	著 オー.	ム社					
書・教									
材									
		授	業	計	画				
回次授	業 項 目	時間	授	業	内 衮	容	予習	引 項 目	

			授 業計 画	
回次	授 業 項 目	按 諠	授 業 内 容	予習項目
1	情報量	2	情報量とエントロピー	対数
2	相互情報量	2	複合事象のエントロピーと相互情報量	確率
3	情報源のモデル	2	情報源のモデルとマルコフ的情報源	マルコフ過程
4	情報源の冗長性	2	情報源の冗長度とエルゴード性	エルゴード的とは
5	情報伝送モデル	2	情報伝送のモデルと雑音の無い通信路	伝送路について
6	雑音の無い通信路(1)	2	雑音の無い通信路の容量	通信路容量について
7	雑音の無い通信路(2)	2	雑音の無い通信路の符号化定理	Huffman符号等
8	中間試験	2	中間試験	
9	符号化(1)	2	冗長度の除去	パリティーチェック符号
10	符号化(2)	2	簡単な符号化と最適な符号化	2次元パリティー, 三角形符
11	雑音のある通信路	2	雑音のある通信路とその通信路容量	通信路容量について
12	誤り訂正符号	2	誤り訂正符号の基礎とHamminng符号	Hamming符号
13	線形符号	2	線形符号の符号化と複合化	BCH符号

14	巡回符号	2	巡回符号の符号化と複合化および符号多項	式	巡回符号
15	符号空間, 暗号	2	符号空間と暗号および応用		公開鍵暗号
期末	期末 期末試験		期末試験		
学習時間合計		30	実時間		25

学修単位における自学自習時間の保証(レポート頻度など)

課題あるいは小テストを6回提出してもらう.

それを基に復習をさせ、類似の演習をやってもらう.

解答例を与えるので、それを復習に役立ててもらう.

学習時間は、実時間ではなく単位時間で記入する。(50分=1、100分=2)