											_	
科目名	CAM					英文表	記		Computer		2012年3月6日	
科目コード	4104								Manufactu	ring		
教員名:下嶋 賢 技術職員名:具志 孝								作成				
	対象	学科/	東攻:	コース		学年	必	選	履修•学修	単位数	授業形態	授業期間
	機柄	見り入っ	テムエ	学科		4年	Ų	<u>ን</u>	履修	2単位	演習	通年
科目目標	ものづくりにおいて3次元CAD・CAMの重要性が増大している。4年生のCAMの授業では、3年時の CADの復習(モデリング作成・アセンブリー・レイヤ管理)を行う。CAD/CAM/加工の一環設計・生産技 術を柱に置き、ものづくりの中核を担当できる知識・スキルを備えた技術者の育成を目指す。											
総合評価	授業中に課題を行う。また, 中間・期末試験に準ずる試験形式で課題を与える。課題をもって評価する(100%)											
	科目達成度目標(対応するJABEE教育目標) 達成度目標の評価方法											
達成度目 標と評価	3面図を表示し、モデリングを作成させる ① ことで、ものづくりに関して体系的に専門 科目を関連づけて理解する。(A-4) 提出されたモデリングの寸法を確認し、体系的 な専門科目の理解度を評価する。											
方法	与えられた条件に対して、グループで協 ② 調して作業し、NCプログラムを作成する ことができる。(C-4) 提出されたNCプログラムとツールパスなどを確 認して評価する。											
本科•専攻科	1	1 2 3 4 JA				BEEプログラム名称			機械システム工学			
教育目標	0		0		JABE	Eプログラ	ム教育	目標		A-2	1 C-4	
授業概 要、方針、 履修上の 注意	前期は、Solidworkのスケッチ、モデリング、アセンブリについて学ぶ、後期は、SolidCAMを持ちたツールパスの生成とMCをつかった加工方法について学ぶ 授業中に課題を行い、終了後提出させる。本人以外の提出は認めない。											
教科書・ 教材	自作資料(パワーポイント),新編 JIS機械製図, 初心者のための機械製図											

授 業 計 画								
週	授	業	項	目	時間	授業内容	自学自習 (予習·復習)内容	
1	SolidV					SolidWorksの使い方をチュートリアルを用いて使用方		
2	SolidV	Vorks	の使V	丶方(2)	2	スケッチの書き方を習得する(寸法拘束, 幾何拘束)		
3	SolidV	Vorks	の使レ	ゝ方(3)		2次元図面の作製法		
4	SolidV	Vorks	の使い	丶方(4)	2	六角ボルトの3DCAD図面の作成		
5	SolidV				2	アッセンブリの方法の習得		
6	SolidV				2	3次元造形物を使った3DCAD図面の作成1		
7	SolidV	Vorks	の使い	丶方(7)	2	3次元造形物を使った3DCAD図面の作成2		
8		中間	試験		2			
9	SolidV	Vorks	の使レ	丶方(8)	2	3次元造形物を使った3DCAD図面の作成3		
10		形物	の製作	乍課題1	2	ミニ4駆の実物の3DCADモデルの作成1		
11	3次元遣		の製作	乍課題2	2	ミニ4駆の実物の3DCADモデルの作成2		
12	3次元遣	形物	の製作	乍課題3	2	ミニ4駆の実物の3DCADモデルの作成3		
13	3次元遣	形物	の製作	乍課題4	2	ミニ4駆の実物の3DCADモデルの作成4		
14	3次元遣	形物	の製作	乍課題5	2	ミニ4駆の実物の3DCADモデルの作成5		
15	3次元造	形物	の製作	乍課題6	2	ミニ4駆の実物の3DCADモデルの作成6		
期末		期末	試験		[2]	製作したモデルを3Dプリンタで製作し、その作品評価	を相互で行う	
16			の概念		2	現在のCAMとNCプログラムの関係		
17	基礎的	内なNo	Cプロ	グラム	2	基礎的なNCプログラムをPPTで説明		
18		ZNC Z	プログ	ラムの課	2	手書きでのNCプログラムの課題作成		
19	CAMの基	基本操	作方:	法(穴明)	2	NCプログラムの課題解説		

r				T					
20	CAM(穴明)の課題	2	CAM(穴明)の課題作成						
21	CAMの基本操作方法(2.5軸)	2	CAM(穴明)の課題解説						
22	CAM(2.5軸)の課題	2	CAM(2.5軸)の課題作成						
23	CAMの基本操作方法	2	CAM(2.5軸)の課題解説						
24	CAM(穴明+2.5軸)の課題	2	CAM(穴明+2.5軸)の課題作成						
25	CAMの基本操作方法(3軸)	2	CAM(穴明+2.5軸)の課題解説 教科書(PPT)にそって、3軸(曲面)加工の説明						
26	CAM(3軸)の課題	2	CAM(3軸)の課題作成						
27	マシニングセンター(MC)と	2	CAM(3軸)の課題解説						
28	MCの使用方法	2	MCでの加工方法(ワーク座標・工具補正など入力)						
29	MCの使用方法	2	MCでの加工方法(ワーク座標・工具補正など入力)						
30	加工するための条件	2	加工するための手順とMCを動かすために必要な 条件の理解度テスト						
期末	期末試験	[2]							
	学習時間合計 60 実時間 実時間 45								
自学自習(予習·復習)内容(学修単位における自学自習時間の保証) 標準的所用									
1	①								
2									
3									
			/						

備考欄

- この科目はJABEE対応科目である。 その他必要事項は各コースで決める。 この科目の関連科目は、応用物理(3年)、総合構造設計(4年)、機械システム工学実験II(5年) 材料力学設計I(2年)、材料加工システムII(2年)、材料力学設計II(3年)、材料加工システムII(2年) 専攻科実験(専攻科2年)である