科目名	材料加工システムⅢ				III .	英文表記		Material Processing Systems Π				2014年3月7日			
科目コード 教員名:下嶋 賢, 津村			3103					Ш							
教員名:下 技術職員名			-		,大嶺 幸	E								1	F 成
		学年 必・		選履修・		学修	単位数		授業形態		授業期間				
		覚シスラ		•		3年			- 10-	8 3単位			講義		通年
科目目標	1年次, 2年次の「材料加工システム」授業での加工基礎理論と実習経験をベースとし、当科目では「モノ」つくりの基盤となる溶接、塑性加工、鋳造、切削・研削加工の概念と理論を、講義主体で修得する。またレーザ加工、放電加工、溶射などの特殊加工技術については、簡単な実習をまじえながら加工理論と現象を理解する。														
定期試験に準ずる試験の結果の平均の40%+前後期合計4回の実習レポート30%, 各課題30%とす 総合評価 る. 学年末評価は前期評価と後期評価の平均で行い, 60%以上を合格とする															
科目目標 達成度と JABEE目 標との対 応	和	目達成	度目標	駅(対応	するJABEE教育目標)			達成度目標の評価方				法	法 目標割合		
	鋳造、溶接加工、圧延加工、塑性加工、切 ① 削加工、研削加工などの加工技術についてその概念と理論を理解する								⇒ テスト結果を以って評価とする.						40%
	2	はめあい,表面性状,切削動力,溶射,放 電加工,レーザ加工についてその概念, 現象,理論を理解する 以って評価する.										30%			
	ものつくり企業の見学、企業研究、外部講 ③ 演を通じ、実際のものつくり現場に必要な ⇒ 課題レポートを以って評価する. 技術を学ぶ									30%					
本科·専攻科 教育目標	1	2	3	4											
				証価-	L 方法と評価	1百日 お	:	明油E	/ / / / / / / / / / / / / / / / / / /	けオス	並 儒堂	<u></u>			
		定期試験	1	- スト		1 7⊼ 1⊂. ∴⊢ト		では では では でででする。 では では でする。 でする。 でする。 でする。 でする。 でする。 でする。 でする。		評価	i セルフチェック				
評価	項目				30	()	4	0			10	00		
基礎的理解			123		30	30		3	30 10		10	70			
応用力(実践・専門・融合)				23				10		1	10		20		
社会性(プレゼン・コミュニケーション・PBL)						1						()		
主体的・継続	意欲	123							10		1	10			
授業概 要、方針、 履修上の 注意	業概 前期中間・期末試験、期末試験を全体評価の40%とし、レポートを全体評価の30%とし、課題を全体評価の30%とし、総合して全体の60%以上の成績を取得した場合、単位を認定する。実習レポート、課題														
教科書• 教材	やさしい機械設計(技術評論社),「機械工作法」,平井三友,コロナ社(ISBN4-339-04453-9) 「新版 機械加工」中山一雄 上原邦雄,朝倉書店 「機械実習 上,中」嵯峨常生他,実教出版														

授業計画 自学自習し は、世界の表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表									
週	授業項目	時間	授 業 内 容	(予習·復 習)内容	チェック				
1	PLC実習1	4	シーケンサのラダー図の作成法を学ぶ						
2	PLC実習2	4	シーケンサを実際に作成し、制御図と同じように動作						
			するか実習にてチェックする。						
3	表面性状実習1	4	機械部品の粗さと理論粗さについてまなぶ						
4	表面性状実習2	4	加工部品の粗さを測定し、送りとの関係をまなぶ						
5	切削動力実習1	4	せん断角と切削力の関係を学ぶ						
6	切削動力実習2	4	切削動力計による測定結果を用いて,せん断角算出						
0		4	法, FFTについて学ぶ						
7	実験計画法(1)	4	偶然誤差、系統誤差について学ぶ						
8	実験計画法(2)	4	精度・確度・不確かさについて学ぶ						
	実験計画法(3)		実験例に基づき、エクセルによるグラフの作成法につ						
9		4	いて						
10	実験計画法(4)	4	ノギスによる計測結果のグラフを作成し、考察方法を 学ぶ						
11	実験計画法(5)	4	磁力の実験を行い、グラブの作成法と考察方法を学 ぶ						
12	実験計画法(6)	4	実験結果をもとに、グラフの考察方法についてまとめ						
13	エネルギー加工実習	4	レーザ加工技術の理論と加工実習について学ぶ						
14	エネルギー加工実習	4	放電加工・ワイヤカットの理論と実習について学ぶ						
15	エネルギー加工実習	4	溶射技術の理論と実習について学ぶ						
期末	期末試験	[2]	試験時間100分 解答50分						
16	溶接·接合技術		授業方針説明,加工学概論,溶接メカニズム						
17	溶接·接合技術	2 2	アーク溶接、被覆アーク溶接、MIG,TIG溶接法の						
18	鋳造技術	2	鋳造模型、鋳型						
19	鋳造技術	2	鋳造用金属材料,溶解炉,鋳物の欠陥と検査法						
20	塑性加工	2	圧延のメカニズムと冷間、熱間圧延技術						
21	塑性加工	2 2 2	圧延する機器とその特徴について学ぶ						
22	塑性加工	2	鍛造、パンチ、プレス加工技術について学ぶ						
	ものつくり企業工場見学(3)	2	拓南伸線の工場を見学し、						
	ものつくり企業工場見学3)	2	ものつくり現場の技術を学ぶ						
	ものつくり企業工場見学(4)	2	須崎の金型工場を見学し,						
26	ものつくり企業工場見学(4)	2	ものつくり現場の技術を学ぶ						
27	ものづくり企業調査	2	ものづくりにかかわる企業研究を行い、技術者として						
	ものづくり企業調査	2	ものづくりにかかわる企業研究を行い、		311111111111111111111111111111111111111				
28			技術者として必要なことについて学ぶ						
29	実習	2	エンジンの分解・組立実習と構造部品の加工技術						
30	加工技術の応用例	2	これまで行ってきた機械工作法の応用技術に ついて学ぶ						
期末	期末試験	[2]		05.5					
	学習時間合計		実時間	67.5	- BB / 목도 / -				
1)			(学修単位における自学自習時間の保証) ご調べ、レポートを作成する。前後期合わせて10回)	標準的所用 各1時間					
2	実習(テーマに沿った実習に	ついて	こ、そのレポートを作成する。前後期合わせて8回)	「ロ・トショ	· 10日				
minnumum.			備考欄						