科目名	生物工学実験			1	≣ ⊋	Biotechnology Lab					2015/02/24					
科目コード 4406					—— 英文表記				Diotechnology Lab				2013/ 02/ 24			
教員名: 田邊俊朗、田中博 技術職員名: 無し 作成																
	ース		学年 必・選		履修•学修		単位数	授業	形態	態 授業期間						
		4年	必 学		修 2単位		実	実験 前其		ī期						
	植物・微生物・タンパク質に関するニューバイオテクノロジーの実験技術を身につける。微生物を培養するための基本的な操作を習得する。生体物質を抽出して、分離し、解析することができる。 酵素利用の為の高度な知識と実験技術・課題解決のための実践力を培う。 実験の詳細な記録が残せる情報管理能力を養う。 基礎的原理や現象を理解するための実験手法、実験手順、実験データ処理法等について理解する。 実験装置や測定器の操作、及び実験器具・試薬・材料の取扱いに慣れ、安全に実験を行うことができる。 実験データの分析、誤差解析、有効析数の評価、整理の仕方、考察の進め方について理解し、実践できる。 実験テーマの内容を理解し、実験・測定結果の妥当性評価や考察等について論理的な説明ができる。 実験ノートの記述、及び実験レポートの作成の方法を理解し、実践できる。															
総合評価	総合評価 前期、後期: 中間・定期試験を行わない。実験レポート(実験ノート)の評点のみで判断する。(100%) 総合評価は前期評価と後期評価の平均で行い、総合評価が60点以上の場合に合格とする。															
	科目達成度目標(対応す るJABEE教育目標)				 達成度目標の評価			ルーブリック								
					方法	理想的な 到達レベル		標準的な 到達レベル			最低限必要な 到達レベル		セルフ チェック			
科目目標 達成医目標 の対応	1	行った実験について、関連情報も含めて得られた結果の持つ意味を考察することができる。(B-1)			で課し、その記述 内容から、情報を 収集した上で結果 の持つ意味を考察		行った実験に興味 を持ち、関連情報 を多数調べ、結果 と比較しな意味を考 察できる。		を調べ、結果と比		を持ち	を持ち、関連情報 を調べることができ				
	2	および て正確	:結果に 建に記録 ことが [:]	こつい 乱ま	し、毎回実験記録 ノートを提出させ、 その記録の正確さ		実験の目的や操および結果について再現性が高くがでるよう、正確に細に記録できる。		こつい 高く保 寉に詳	および結果につい		E どのような実験か、 どのような操作をし たか、誤りなく記録 できる。				
	3		·実験撴 。(B-2		正しい操作かた実験した中におけるの値から判践その精度に応配点する。	精度の高い正しい 実験操作ができ る。		正しい実験操作ができる。		` ち、実	実験に興味を持 ち、実験に積極的 に参加できる。					
本科·専攻科教育	1	2	3	4	JABEE	プログ	ラム名称		生物資源工学							
目標	0	0	0		JABEEブ	BEEプログラム教i		教育目標		B-1, B-2						
評価方法と評価項目および関連目標に対する評価割合																
目標との関連				定期試験			・ストレポー		その他(演習課題・発表・ 実技・成果物等) 総合		合評価	評価 セルフチェ		ック		
評価項目				0	0				0		100					
基礎的理解 ②						60				60						
応用力(実践・専門・融合) ① 社会性(プレゼン・コミュニケーション・PBL)							3	0			30 0					

主体的	•継続的学修意欲	3			1	10			10		
生物工学実験では生物工 授業概要、方 術を学ぶ。特に種々の生命 針、履修上の 注意 課題解決のための実践力 きやすく安全確保が容易な 験・補講を行わないので全			市現象である。各種を培う。 に服装、	で重要な役割を男 重精製法などにつ 。詳細に記録が歿 髪型が望ましい	果たし、産業 いての実 残せる力の 。実験中に	業でも多 験を通 育成を よ必ずら	が して、酵素 重視し、 は する、必要	月いられ 利用の 毎回実験 に応じて	る酵素に 為の高度 記録ノー て保護メス	:関する基礎的 ほな知識と実験 -トの提出を求 ガネを着用する	かつ実 技術・ める。 る。 再実
教科 書 教材	参考図書:生 雪実験ハント 「分離・精製・ ト、バイオ実	E物工学ハンド ドブック、タンハ 性質、生化学 験イラストレイ	ブック、 《ク質科 実験書 テッド5	ポイントなどプレセ、生物工学実験 、生物工学実験 科学イラストレイテ II酵素・その他の タンパクなんてこ :酵素、タンパク!	書、初歩か デッド、最適 ウタンパク質 わくない、 質、enzyme	iな実験 賃、図解 プロテァ e、biore	を行うたる バイオテ ナミクス、I	めのバイ クノロジ	オ実験 <i>0</i> ーⅡ、改訂	D原理、生化学 ∫タンパク質実	生実験 験ノー
	ı			授 業 I	計 画					+ W + 77	1
週	授業	項目	時間		授	業	9 容			自学自習 (予習·復 習)内容	セルフ チェツ
1	殺菌・滅菌法、培 [‡] 植物の組織培養	地調製	4	殺菌・滅菌法・無植物の組織培養を				実習する	5 .	無菌操作組織培養	
2	各種スクリーニンク 酵素活性測定	グ法と	4	様々なスクリーニ 各種の酵素反応 酵素の活性を定	を実習す	る。			する。	スクリーニン グ ・酵素	
3	酵素活性測定		4	各種の酵素反応 酵素の活性を定			的に調べ	る。		酵素	
4	タンパク質の定量		4	Bradford法による 分光分析法を用						Bradford法	
5	コンピテントセル訓 大腸菌からのプラ		4	大腸菌の高効率大腸菌からのプ					5.	コンピテント セル プラスミド抽 出	
6	大腸菌からのプ ⁻ 精製と 大腸菌の形質転担	-	4	大腸菌からのプ 分光分析法を用 大腸菌の形質朝 微生物を培養す	いて、生存 表換法を実	本物質を	上定量する	5.	をして、	プラスミド精 製 形質転換	
7	微生物による酵素 の大量生産	そやタンパク質	4	微生物による酵	素の大量	生産法	を実習す	3 .		微生物によ る物質生産	
8	酵素の粗精製とな グラフィー	カラムクロマト	4	硫安沈殿など酵や溶媒を用いて ろ過や遠心分離 調製し、分離用/ 精製の基礎を実 濃度直線勾配を 習する。	、生物試料 等の簡単 ゲルを空力 習する。 ク	料から目 な精製 iラムに ブラジエ	目的の生存ができる。 充填する ントミキャ	*物質を・各種のなど、低・一を使	抽出し、 緩衝液を 圧カラム 用して塩	・ 硫安沈殿・ カラム操作	
9	組換え型緑色蛍の抽出と精製	光タンパク質	4	超音波破砕によ 法や溶媒を用い し、ろ過や遠心/ 疎水性相互作用	て、生物語 分離等の簡	式料から 簡単な精	ら目的の も 製をする	E体物質 。	を抽出	超音波破砕 タンパク質 の精製	

10	組換え型緑色蛍光タンパク質 の脱塩	4	ゲル濾過・透析など各種のタンパク質溶液の脱塩法を実施 し理解する。分光分析法を用いて、生体物質を定量するこ とができる。	脱塩 ゲル濾過							
11	SDS-PAGE	4	SDS-PAGE用ゲルの調製法を実習する。 電気泳動法によって生体物質を分離する。	SDS-PAGE Rfと分子量 の算出							
12	SDS-PAGE(2)	4	SDS-PAGE用ゲルの調製法を実習する。 電気泳動法によって生体物質を分離する。 SDS-PAGEによる精製度確認と分子量算出法を実習する。	SDS-PAGE Rfと分子量 の算出							
13	酵素の性質検討	4	基質特異性、最適温度や最適pHなど酵素の性質を検討する方法を実習する。	酵素化学的 性質							
14	酵素の性質検討(2)	4	基質濃度を変えて酵素反応を行い、酵素反応速度論的解 析を実習する	酵素反応速 度論							
15	バイオリアクター	4	簡易なモデルバイオリアクターを組み立て、物質生産を実 習する。	バイオリアク ター							
期末											
16											
17											
18											
19											
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
期末											
	学習時間合計 60 実時間 45										
	自学自習(予習・復習)内容(学修単位における自学自習時間の保証)										
	自学自習欄の予習項目に関する課題を課す。										
2	復習として実験レポートの提出を	各1時間×15回									
	備考欄										

(共通記述)

- ・ この科目はJABEE対応科目である。 その他必要事項は各コースで決める。 (各科目個別記述)
- ・ この科目の主たる関連科目は生物工学(4年)、生化学実験(3年)、神経細胞生物学(専攻科1年)、代謝生化学(専2)。その他必要事項は各コースで決める。

学習時間は、実時間ではなく単位時間で記入する。(45分=1、90分=2)