科目名		糸	細胞工物	 学		** 立 圭 記		O total alcord			0015 (00 (04		
科目コード 5405						英文表記		Cytotechnology			2015/02/24		
教員名: 田邊俊朗											作成		
技術職員名:無し									1F政				
対象学科/専攻コース							必∙選	必·選 履修·学修 単位数 授業形		授業形態	授業期間		
	生	物資源	工学科			5年	選択 学修 2単		2単位	講義	前期		
科目目標	化学の視点から、細胞の構造と細胞内小器官の機能を学び、セントラルドグマに関わる細胞内物質輸送について理解する。 さまざまな細胞の遺伝子的形質転換法を学ぶ。 各種の細胞培養法、および、大量の培養細胞による有用物質の生産法について学ぶ。												
総合評価	予習課題と復習課題(40%)および中間試験と小テスト(20%)、定期試験(40%)の割合で100点満点で評価する。 総合評価 60点以上を合格とする。中間試験・定期試験の再試は行わない。 答案返却時に受け取りに来ない場合、評価を保留する。												
	秋日達成度日堙(数広才 達成度					の証価	ルーブリック						
	科目達成度目標(対応す るJABEE教育目標) 			達成度目標の評価 方法		理想的な 到達レベル			標準的な J達レベル	最低限必要な 到達レベル		セルフ チェック	
科目目標達成医目標の対応	1	細胞の構造、細胞内小器官の機能、細胞の取り扱いを 細胞の取り扱いを 細胞培養に係るシー がででは関わる 細胞内物質質輸送に でで理解する。 (A-3)			細内細細備ル細つ理る構官の場ではでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、	機能、というできます。 という という はいいい はいいい はいい とう はいい といい といい といい といい といい といい といい かい といい かい か	内小器官の機能、や細胞の場合はないでは、いかでは、いかでは、いかでは、いかでは、いかでは、いかでは、いかでは、い		内細細備ル細つ解れらが、状胞にした正で、といって、といって、といった。	よびセントラマに関わる 物質輸送に関わるに割からい、与えいにいい。 おいまい ちょう おいまい ちょう おいまい といる おいまい といる おいまい といる といる といる といる といる といる といる といる といる とい	細胞内物質輸送に ついて一部理解し		
	2	微生物、植物および動物細胞の遺伝的形質転換法を学ぶ。(A-3)				の遺伝 法につ _{うい、} 内容で	いて良く理解し、最新の手法まで例を 挙げて説明でき		び動物 的形質 いて理	加肥の遺伝	微生物、植物および動物細胞の遺伝的形質転換法に興味を持ち、一つの例を挙げて説明できる。		
	3	ど、バイオテクノロ ジーの応用例につ			細胞の大量培養に よる物質生産法に ついて試験し、理 解度を評価する。		細胞の大量培養による物質生産法など、バイオテクノロジーの応用例について学習項目全般にわたり例を挙げて説明できる。		なロった。パイオテクノロシーの応用例につ般				
本科·専攻科教育	1	2	3	4	JABEE	プログ	ラム名称		生物資源工学				
目標	0	(a)			JABEE	BEEプログラム教育目標			A-3, B-1				
評価方法と評価項目および関連目標に対する評価割合													

	目標との関連	定期試験	小テスト	レポート	その他(演習課題・発表・ 実技・成果物等)	総合評価	セルフチェック
評価項目		40	20	40	0	100	
基礎的理解	12	10	20	40		70	
応用力(実践・専門・融合)	3	30				30	
社会性(プレゼン・コミュニケーション・PBL)						0	
主体的・継続的学修意欲			***************************************			0	

授業概要、方 針、履修上の 治、履修上の 注意 に深く関連した文献購読を取り入れる。

教科書• 教材

教材:教員自作プリント、パワーポイントなどプレゼン資料 参考図書:細胞工学概論、核酸V細胞工学的技術、タンパク実験プロトコール1機能解析編 (キーワード:細胞、 生体膜、物質生産)

+∞ ** =1 									
授業計画									
週	授業項目	時間	授業内容	自学自習 (予習·復 習)内容	セルフ チェック				
1	細胞工学とは	2	細胞工学で何を学ぶかを概観する。	細胞工学					
2	細胞の構造と仕組み	2	細胞の構造と仕組みについて理解する。	細胞内 小器官					
3	遺伝子の発現	2	DNAの構造について遺伝情報と結びつけて理解している。 転写・翻訳に関わるRNAについて理解する。遺伝情報とタンパク質の関係について理解している。	セントラルド グマ					
4	細胞培養の準備と一般的実験 操作	2	細胞研究に必要な設備・試薬・器具・操作を理解する。	細胞培養 設備					
5	復習と理解度確認試験[1]	2	細胞の構造と細胞内物質輸送について復習する。	授業項目1- 4					
6	細菌へのDNA導入法	2	遺伝子組換えの技術を理解する。大腸菌の形質転換法を学ぶ。	大腸菌					
7	真菌・酵母へのDNA導入法	2	真菌・酵母の形質転換法を学ぶ。	酵母					
8	前半のまとめと中間試験[1]	2	授業項目1-7の要点を復習する。	授業項目1- 7					
9	昆虫細胞へのDNA導入法 	2	昆虫細胞の形質転換法を学ぶ。	昆虫細胞					
10	植物細胞へのDNA導入法	2	植物細胞の形質転換法を学ぶ。	植物細胞					
11	動物細胞へのDNA導入と細胞 融合	2	動物細胞の形質転換とハイブリドーマ作製法を学ぶ。	ハイブリドー マ					
12	復習と理解度確認試験2[1]	2	各種の細胞系における形質転換法を復習する。バイオテク ノロジーの応用例(遺伝子組換え作物、医薬品、遺伝子治療など)について説明できる。	授業項目9- 11					
13	無血清培養、 高密度大量培養·凍結	2	合成培地・大量培養の制御法を理解する。	血清					

14	動物細胞の機能制御	2	抗体産生促進因子について学ぶ。	抗体			
15	フローサイトメトリー	2	フローサイトメトリーの原理と実際の操作を理解する。	サイト メトリー			
期末	期末試験	[2]					
16				<u> </u>	[
17				<u> </u>	<u> </u>		
18	1	i		<u>'</u>	<u>[</u>		
19		i		Ĭ'	[!		
20	1	i		<u>'</u>	<u>[</u>		
21		i		<u>'</u>	<u>[</u>		
22		l		<u>.</u> '	<u>[</u>		
23	1	l		<u>.</u> '	<u> </u>		
24	1	ļ		. '			
25	······	ļ		. '	<u> </u>		
26		ļ		. '	<u> </u>		
27	······	ļ		. '	ļ		
28		ļ		 '	ļ		
29		ļ		 '	ļ		
30		<u> </u>		'	<u> </u>		
期末					<u> </u>		
	学習時間合計			22.5			
			学修単位における自学自習時間の保証)	標準的所用時間	引(試行)		
1	① 自学自習欄の予習項目に関する課題を課す。 各2時間×15						
2	復習としてまとめ報告書の提出を	を課す	0	各2時間×	15回		
	備考欄						

(共通記述)

・この科目はJABEE対応科目である。 その他必要事項は各コースで決める。

(各科目個別記述)

・ この科目の主たる関連科目は生物工学(4年)、タンパク質工学(5年)。その他必要事項は各コースで決める。

学習時間は、実時間ではなく単位時間で記入する。(45分=1、90分=2)