

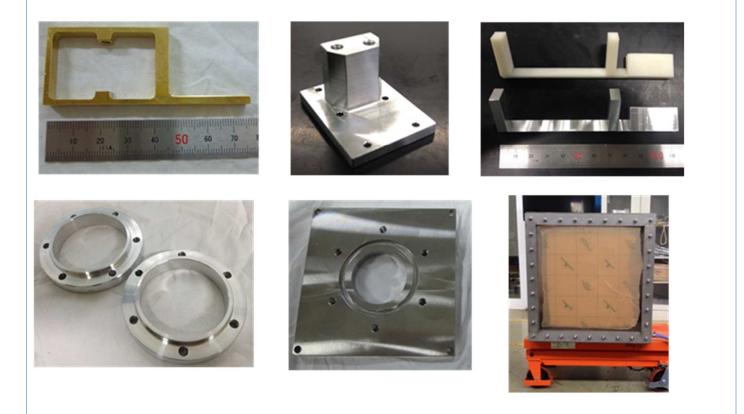
Comp					
Name	150				
Status	Techni	cal Staff			
Affiliations					
Keywords		Information processin	g,computer	network	·
Technical Support Skills		 Network constructio Windows Products A Server Virtualization 	ctivation		

Research Contents

Virtual Server

Main Switch

Available Facilities and Equipment								



Making the parts using the CNC Machine

Name	Name Yukimasa Omine		E-mail omine@okinawa-ct.ac.jp			
Status Technical Staff						
Affiliations						
Keyword	s	CNC Machining , CA	AD, CAM		·	
Technical Support Skills		• Machine work • CAD and CAM				

Research Contents

Trial manufacture

Available Facilities and Equipment	
CNC Milling (MAKINO KE-55)	
Machining center (MAZAK VARIAXIS 500-5X)	
CNC Turning (DMG MORI NL2500)	

Charging Voltage $\,\sim$ 4.0k) Charging Energy $\,\sim$ 6.4kJ

High Voltage

Generation of Underwater Shock Wave using High voltage electrical discharge

Name Osamu		ı Higa	E-mail	osamu@okinawa-ct.ac.jp	
Status Ph. D.					
Affiliations		IEEJ (The Institute of	Electrical E	ngineers of Japan)	
Keywords		Electric discharge, Ur	nderwater s	hock wave, Pulse power, Food	processing
Technical Support Skills			roduction o	high pressure by underwater s f high voltage circuit gh-speed camera	hock wave

Research Contents Generation of underwater shock waves using high voltage electrical discharge and its application

- We are researching applications of underwater shock wave generated by high-voltage underwater discharges to agriculture, forestry, and fishery resources.
- We are researching discharge characteristics generated shock waves effectively and applied it to the development of shock wave devices.

We are developing generation techniques of shock wave

by electric discharge (Fig 1).

- $\checkmark~$ Generated the shock wave by spark discharge and wire explosion on underwater electrode
- ✓ The faster the expansion of electric discharge or wire explosion, the stronger the shock wave that can be generated.

We are measuring and evaluating the discharge characteristic and propagation of the shockwave.

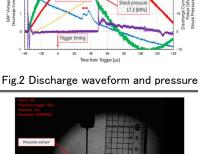
- ✓ Measure discharge characteristics and shock wave intensity and feedback to equipment development (Fig. 2)
- ✓ Shock wave phenomenon is evaluated by visualizing using a high-speed camera (Fig. 3)
- \Rightarrow Instantaneous high power and high pressure can be used

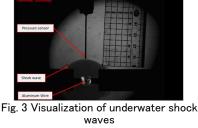
We are researching for practical application of instantaneous

high-pressure to agriculture, forestry, and fishery resources

- ✓ Can be expected to processing effects that cannot be obtained with standard methods
- \checkmark Researched application to various objects
- 1. Spall processing of lacquer tree for raw lacquer extraction
- 2. Processing to YUZU citrus to improve extraction of aroma oils (Fig. 4)
- 3. Leaf milling for essential oil extraction
- 4. Crush processing of rice with non-heating

YUZU citrus




Fig.1 Generate of shock wave using

electric discharge

Water

Al wire

ion Pressure

Available Facilities and Equipment

Portable Shock wave generator (1J, 30kV, 10pulse/sec, Self-developed)	High speed video camera Kirana 5M (5Mfps)	
Marx type shock wave generator (4.9kJ, 14kV, 12pulse/min, Self-developed)	Optical system (Self-developed)	
Capacitors bank type shock wave generator (4.9kJ, 3.5kV, 12pulse/min,	Underwater Shock pressure sensor, Measuring instrument for high	
Self-developed)	voltage and high current	

Island biology : Evolutionary Biology and Ecology of Plant Mutualisms

Name			E-mail	kenta-w@okinawa-ct.ac.	jp	00
Status	Status Ph. D.					-
Affiliatio	ns	The Society for the St Japan,	udy of Speci	ies Biology, Ecological soc	iety of	y m
Keywords		Island Biology, Eve Education, genus <i>Psy</i>	•	Ecology, Reproductive erostyly	Biology, Env	rironmental
Technical Support Skills		Biodiversity analysi Plant documentation	•	ental education, Plant id canography"	entification	

Research Contents Island Biology, Conservation and Environmental Education

Key topics and central questions:

1. Evolutionary ecology of the plant breeding systems and pollination biology on islands

- 2. Plant adaptations to problematic soils; Plant-Fungi symbiosis; Reproductive interference and habitat isolation What caused the different plant species composition between limestone and non-limestone forests in the Ryukyu Islands?
- **3. Seed dispersal mutualisms on islands** Who are the essential seed dispersal agents in the Ryukyu and Bonin Islands?
- **4. Metadata analysis of island biota** Can we use the Japanese Islands as a model system for "Island Biology"?
- 5. Conservation biology of the marine systems in the Ryukyu islands and environmental education What can we learn from a local marine system (Oura Bay)?
- 6. Floral scent analysis and genetic diversity

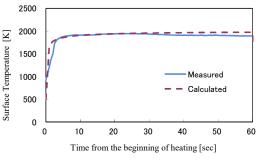
How floral scent differs between individual plants, and what does it mean ecologically?

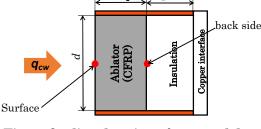
Available Facilities and Equipment

Scanning electron microscopy (SEM)

Fluorescence microscopy

Study of the heat resistance


Name	Kenta	Gibo	E-mail	gibo@okinawa-ct.ac.jp		
Status	Techni	cal Staff				
Affiliatio	ns					
Keyword	S	Thermal analysis of the heat-resistant material, Numerical simulation				
Technical Support Skills		Thermal design of hea	at-resistant	material		


Research Contents

Numerical simulation of thermal response of the heat-resistant material

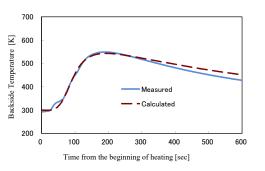

Re-entry capsule to bring back equipment to Earth from a space is exposed to severe heating environment by aerodynamic heating during re-entry. CFRP ablator are used as thermal protection materials to protect against high heat environment inside the capsule. In order to design the ablator, it is necessary to predict the thermal behavior. This thermal analysis technology is effective not only for the special environment of the atmospheric re-entry, but also in the design of heat-resistant material in general.

Table 1 Test conditions						
Heat condition	Heat condition					
Heating rate $: q_{cw}$	0.98MW/m ²					
Heating time : T_h	60s					
Test model						
Diameter $: d$	34mm					
Length of ablator $: t_1$	20mm					
Length of insulation $: t_2$	20mm					

 $Fig. 1 \ Outline \ drawing \ of \ test \ model$

(a)Comparison of surface temperature

(b) Comparison of back side temperature

Fig.2 The comparison between the measured and calculated values

Available Facilities and Equipment	

研究タイトル:

落雷学習教材の開発						
氏名:	白石博角	🛚 🗡 SHIRAISHI Hironobu	E-mail :	h-shira@okinawa-ct.ac.jp		
職名: 技術職員		l	学位:	学士(理学)	(CA)	
所属学会	会・協会:					
キーワー	-ド:	電気回路、電子回路、高電圧、教材開発				
技術相言 提供可能		・電気, 電子回路 ・教材開発				

研究内容:

雷の発生とその性質を学ぶ教材の開発 落雷から身を守るための対策を解説する教材開発

落雷デモ装置

落雷のデモンストレーション

提供可能な設備・機器:

名称·型番(メーカー)						

Development of learning materials on lightning

Name	Hironobu SHIRAISHI		E-mail	h-shira@okinawa-ct.ac.jp			
Status	Techni	ical Staff					
Affiliations							
Keywords		Electric circuit, High voltage, Development of Teaching Materials					
Technical Support Skills		 Electric circuit Development of Lear 	rning Mater	ials			

Research Contents

Lightning Generator

Demonstration of lightning strike

Available Facilities and Equipment

rivanabie i aciii	ice and Equipment		